Martin Bitzan
Head, Kidney Centre of Excellence
Al Jalila Children's Hospital
Dubai, U.A.E.

Department of Pediatrics

McGill University Health Centre

Montreal, Canada

Nephrotic and Nephritic Presentations in Pediatrics

Third International Pediatric Summit 2019

Dubai U.A.E.
February 16, 2019

Disclosures

- I have no conflict of interest related to the discussed topic
- I will not endorse off-label use of medications or devices
- I will not use brand names for medications
- I received permission for the educational use of patient photographs

Case 1

- 4 y/o boy, previously healthy
- Increasing facial and body swelling following a mild URTI
- Diagnosed with childhood nephrotic syndrome and treated with standard dose of oral prednisolone
- Returns to ED for abdominal pain and fever
- Rapid deterioration with arterial hypotension
- Referred to Al Jalila, admitted to PICU
 - Appears septic with painful abdomen and moderate ascites, generalized edema
 - Cardiac arrest, resuscitated, ventilated for 2 days
 - Intravenous antibiotic and glucocorticoids (full recovery)

- Key lab findings
 - Profound hypoalbuminemia
 - Blood culture from referring hospital positive for S. pneumoniae
- Outcome
 - Full recovery
 - Good response to gluococortiocoid therapy
- Diagnosis
 - Childhood nephrotic syndrome (likely minimal change disease)

Overview of the topic

- Childhood nephrotic syndromes
 - INS/MCD
 - FSGS
 - MPGN
- Nephritic syndromes
 - APIGN
 - IgAV (Schönlein Henoch purpura)
 - IgA nephropathy
 - Vasculitides
 - Immune complex mediated glomerulonephritis
- Rapidly progressive glomerulonephritis

Nephrotic syndrome

Nephrotic syndrome is a disease of the glomerular filtration barrier

Nephrotic range proteinuria >40 mg/h/m² (960 mg/day/m²

Niaudet >50 mg/kg/day

Upc >2 g/g (0.2 g/mmol)

Hypoalbuminemia <25 g/L

Edema

Not apparent in all patients

Hyperlipidemia

Not always present

Bland urine sediment (primary nephrotic syndrome)

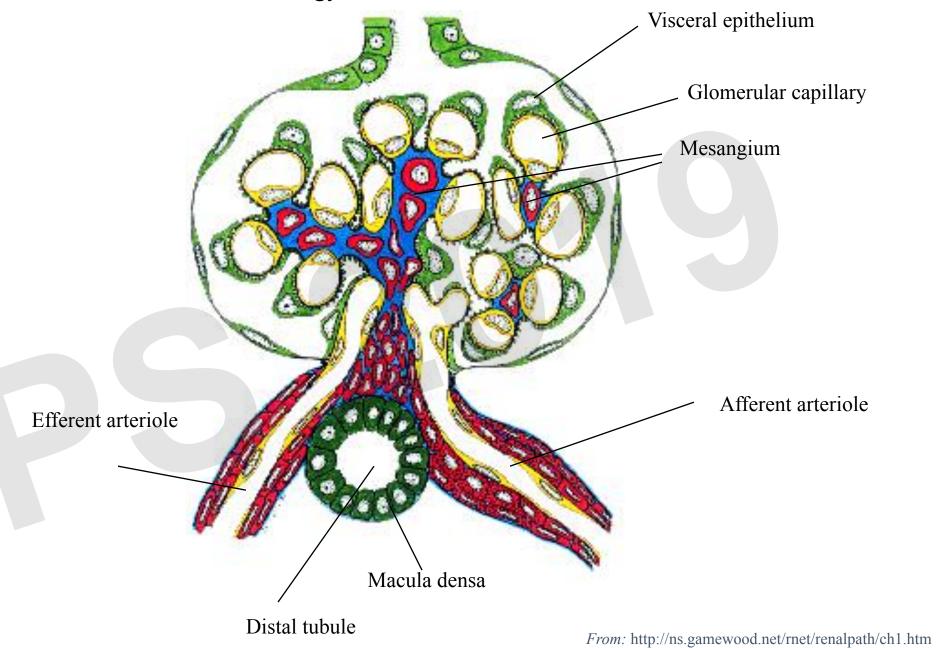
Lack of glomerular inflammation per biopsy

Nephritic syndrome

- Clinical syndrome
- Association of
 - Hematuria (usually visibly bloody ("gross" or macrohematuria)
 - Proteinuria
 - Arterial hypertension (frequent)
 - AKI due to glomerular inflammation
 - Typically "active" urine "sediment" (RBC or mixed cellular casts)

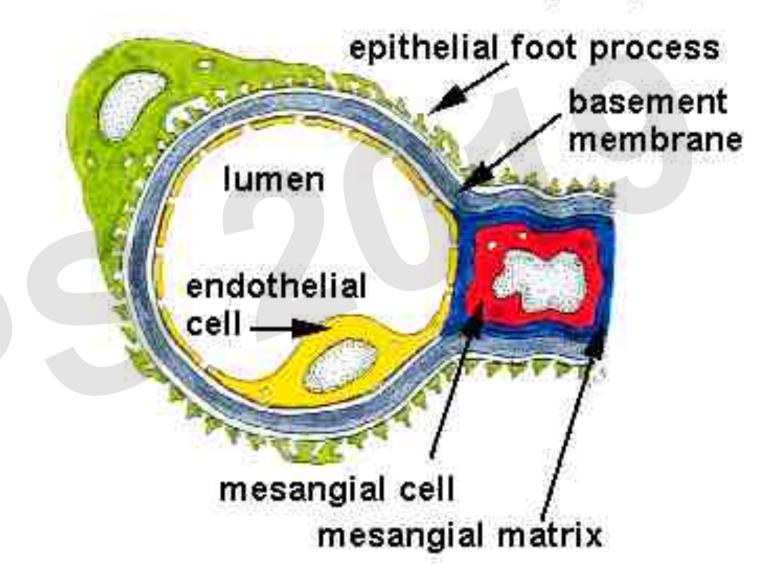
Nephrotic syndrome - a bit of history

- 2/3 would die before treatment became available
 - Infections (loss of immunoglobulins with proteinuria)
 - Malnutrition (loss of nutrients)
- Improvement of outcome with first antibiotics in 1939
- Breakthrough with use of cortisone in early 1950s
 - Death rate decreased to 9% (still high)
 - Clear benefit of cortisone
 - Placebo controlled trials never performed



Clinico-Pathological Classification of Nephrotic Syndromes in Childhood

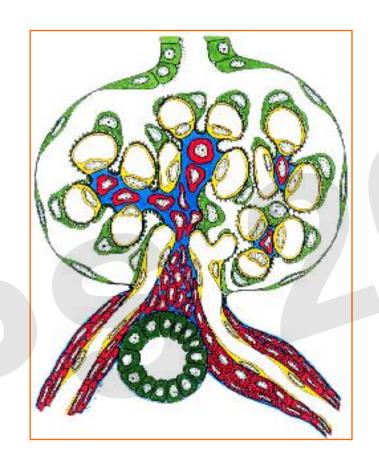
Primary NS


- Absence of an identifiable systemic disease (e.g. idiopathic nephrotic syndrome)
- Nephrotic syndrome as part of a complex (genetic) syndrome ("syndromic nephrotic syndrome")
- Secondary NS
 - Presence of identifiable systemic disease, including (congenital) infections
- Nephrotic syndrome according to age at onset
 - Congenital (< 3 months)</p>
 - Childhood
 - Adolescence and adulthood

Normal Glomerular Histology

Normal Glomerular Histology

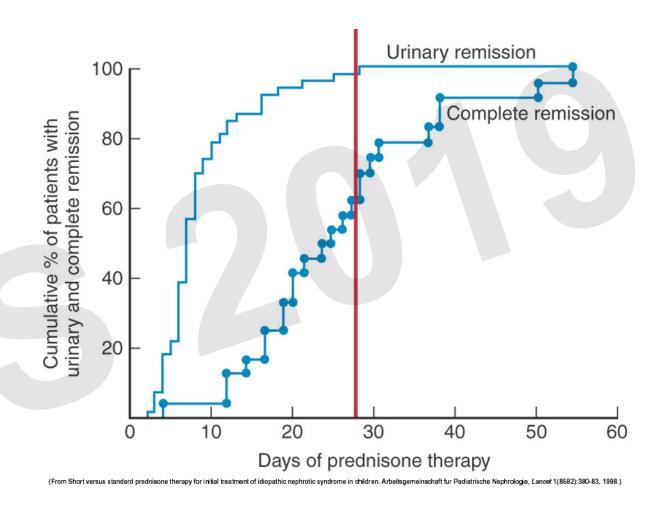
Normal Glomerular Capillary



The glomerular filtration barrier

Images from: Somlo S, Mundel P. Getting a foothold in nephrotic syndrome. *Nature Genetics* 2000; 24, 333 - 335

Focal Segmental Glomerulosclerosis



The diagram depicts **perihilar segmental sclerosis**, which is continuous with the afferent arteriole

Nephrotic syndrome in children

- Cumulative prevalence 16/100,000 children
- Clinical diagnosis
 - Large proteinuria (>40 mg/h/m 2 = >1 g/d/m 2 body surface area)
 - Normal $< 4 \text{ mg/h/m}^2 (< 100 \text{ mg/d/m}^2)$
 - Hypoalbuminemia (<25 g/L)
 - Edema
- Idiopathic childhood nephrotic syndrome
 - 80 % Minimal change disease (MCD)
 - 10 % Focal segmental glomerulosclerosis (FSGS)
 - 10 % other etiologies

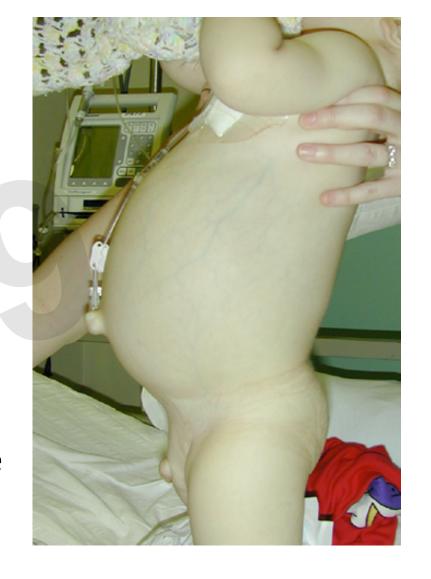
Initial treatment response to prednisone in MCD

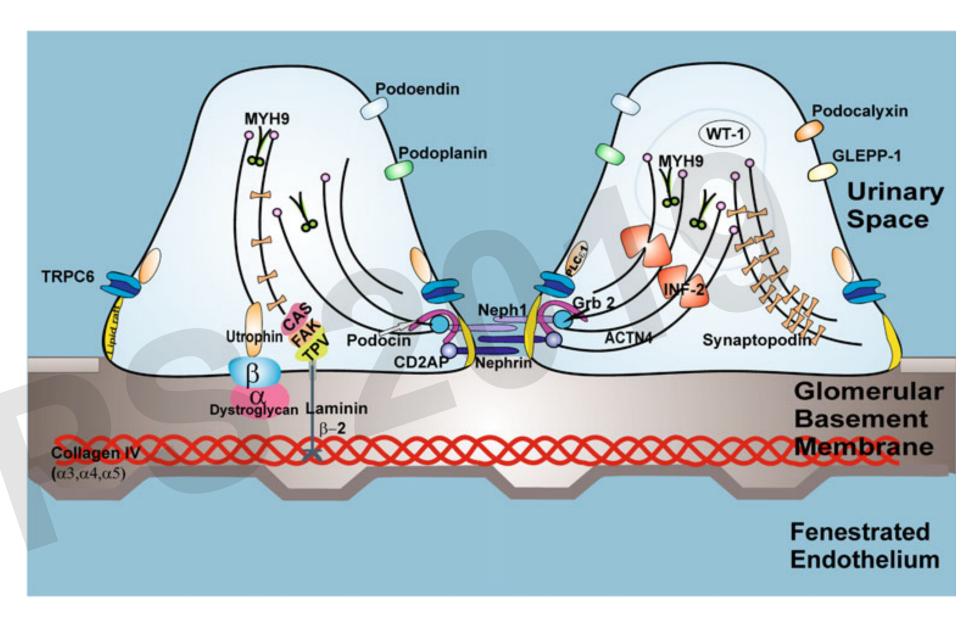
From Geary/Schaefer "Comprehensive Pediatric Nephrology", 2008; Fig. 16-1 – modified.

Original data: Short versus standard prednisone therapy for initial treatment of idiopathic nephrotic syndrome in children.

Arbeitsgemeinschaft für Padiatrische Nephrologie, Lancet 1998; 1(8582):380-383)

Supportive/Rescue therapy


- Albumin infusion (with furosemide)
 - Volume depletion with adverse effects
 - Ischemia due to poor perfusion/hypoxia
 - Mesenterium (abdominal pain)
 - Kidneys (elevated creatinine)
 - Severe edema, including ascites / scrotal edema



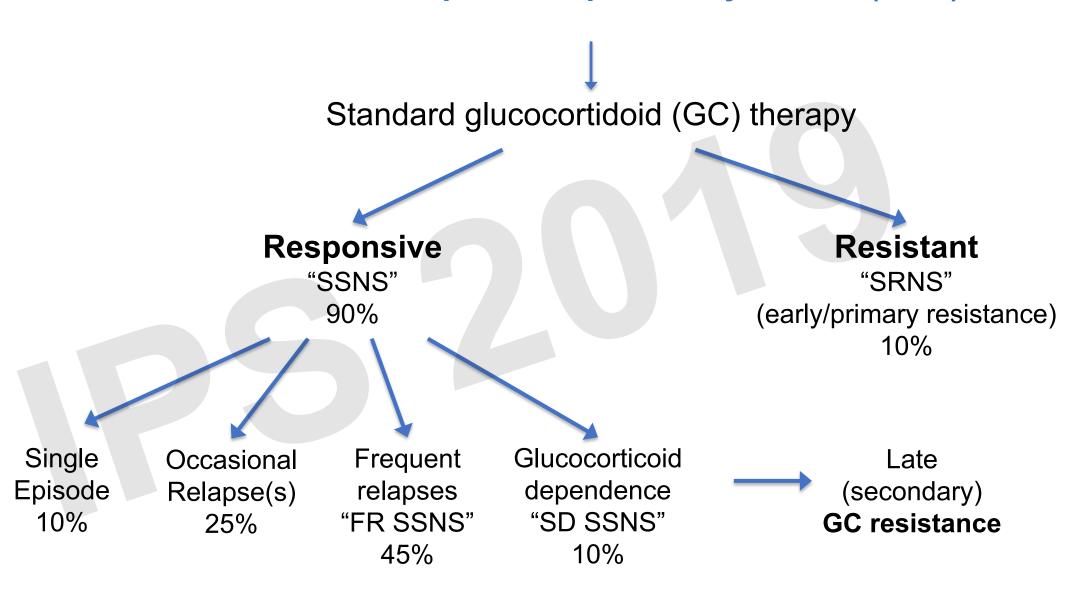
Problem # 1 Lack of treatment response

About 10% of children do not respond to prednisone

- Glucocorticoid "resistance"
- Often due to FSGS or other glomerular disease
- Kidney biopsy for diagnosis
- Alternative treatment

Gbadegesin R et al. Pathogenesis and therapy of focal segmental glomerulosclerosis: an update. Pediatr Nephrol 2011; 26: 1001-1015

Problem # 2 Relapsing Nephrotic Syndrome


About 30 % relapse frequently (≥4 times/12 months)

- "Frequently relapsing nephrotic syndrome" (FRNS)
- 10-20 % relapse during treatment or immediately after "standard" course of prednisone
 - "glucocorticoid-dependent nephrotic syndrome" (SDNS)

Problem # 3 Nephrotic Syndrome and Infection

- Infectious complications
 - Peritonitis, cellulitis
- Infection prevention
- Immunizations
 - Varicella, S. pneumoniae, H. influenzae
 - Seasonal influenza
 - Does immunization lead to relapse?
 - Vaccine efficacy while receiving prednisone?
 - Live vaccine *Pro* and *Con*
- Antibiotic prophylaxis?

Childhood Idiopathic Nephrotic Syndrome (cINS)

Treatment of frequently relapsing or glucocorticoid-dependent nephrotic syndrome

- "Second line" agents
 - Mycophenolate mofetil (MMF)
 - Calcineurin inhibitors (tacrolimus, cyclosporine A)
 - Cyclophosphamide
 - Levamisole
 - Rituximab

Practical, outcome-oriented classification of "primary" nephrotic syndromes

- Glucocorticoid-responsive nephrotic syndrome (MCD, some FSGS)
- Genetic forms of nephrotic syndrome/FSGS
 - Mutations affecting glomerular barrier (structural or functional podocyte or GBM genes)
 - Congenital (often AR)
 - Adult onset (often AD)
 - Syndromic
- "Non-genetic", recurrent ("rapidly progressive") FSGS (R-FSGS)
 - Permeability factor/extrarenal cause
- "Non-genetic", non-recurrent FSGS

Case 2

- 5 y/o boy, previously healthy
- Cough 4 days prior to ED, 1 day of fever, moderate respiratory distress
- Pneumonia with consolidations R > L
- Absolute neutrophil count and CRP are moderately elevated,
- Admitted for IV antibiotic treatment
- 3 days later
 - While patient appears clinically stable, he voids dark bloody urine

Case 2 What is your approach to this patient?

- 1. Call a urology consultant and request a cystoscopy
- 2. Obtain an abdominal X ray
- 3. Do a kidney stone work up
- 4. Ask the rheumatologist for help
- 5. Obtain a urine culture and change the antibiotic
- 6. Last resort: contact the (pediatric) nephrologist

Case 2

Key lab results

Diminished serum C3

Hight ASOT

Diagnosis

APIGN (APSGN) due to pneumonia

Likely caused by S. pyogenes

Gross hematuria in children

- It is usually not bladder cancer
- Rarely due to strictly "urological" etiology
- Urine appearance
 - Fresh blood (bright) or dark (tea coloured) ?
- Does the patient describe pain ?
 - Location, time, related to micturition and when during micturition?
- Is the hematuria associated with a current or recent infection?
- Systemic signs
 - (Vasculitc) rash, petechiae, arthralgia, edema, arterial hypertension?
- Has hematuria occurred in the past?

Acute postinfectious glomerulonephritis (APIGN)

- APIGN is the most common form of acute glomerulonephritis in childhood
- Pathogenesis
 - Immunologically mediated, inflammatory disorder of the renal parenchyma
 - Characterized by alternative complement pathway activation and exudative, proliferative glomerulonephritis
 - Manifestation after a latent period of 1–3 weeks after upper respiratory tract infection/pharyngitis or 3–5 weeks after pyoderma
 - Caused by group A hemolytic streptococci (S. pyogenes) and other infectious organisms

APIGN - Clinical Features

- Triad of
 - (gross) hematuria
 - Arterial hypertension
 - Generalized edema (acute nephritic syndrome)

Spectrum clinical presentation ranges from microhematuria to nephrotic syndrome, severe renal failure, and encephalopathy or seizures due to hypertension (posterior reversible encephalopathy syndrome, PRES).

APIGN - Laboratory evaluation

- Important lab tests
 - Renal function
 - Urinalysis
 - C3 and C4
 - Microbiological studies
 - Throat swab, skin swab, blood culture if indicated
 - Serological studies (ASOT, ADB)
 - Antigen detection / nucleic acid tests

Treatment and prognosis

Treatment

- Symptomatic
- Hypertension and fluid retention: diuretics = first line
- Anti-hypertensives if needed

Antibiotics

 do not change course of (or prevent) disease but may limit spread of nephritogenic strains of betahemolytic Streptococci

Prognosis

- Excellent outcome in >95 % of cases
- Progression to end-stage renal disease or recurrence of APIGN is extremely rare

IgAV / SHP (Schoenlein Henoch Purpura)

- Most common vasculitis in children
- Manifestations
 - Purpura and/or petechiae
 - Abdominal pain (submucosal vasculitis)
 - Non-deforming arthritis
 - Nephritis
- Hematuria (mostly microscopic) in 80% of children
- Full picture of nephritis and/nephrotic syndrome in < 10%
- Hematuria and proteinuria resolve within 3 mo of onset of purpura
- Nephrotic syndrome and rapid rise of S-cr (RPGN) are associated with CKD or ESRD

Wegbereiter der Rheumatologie

Z Rheumatol 2007 · 66:716-724 DOI 10.1007/s00393-007-0179-z Online publiziert: 1. Juni 2007 © Springer Medizin Verlag 2007 W. Keitel Gommern-Vogelsang

Johann Lukas Schönlein (1793-1864)

Der degradierte Ehrenbürger

Abb. 2 ▲ Julius Hospital Würzburg von Fürstbischof Julius Echter von Mespelbrunn 1580 eingeweiht

Abb. 1 ▲ Titelbild des Ausstellungskataloges "... und ewig erklingen wird sein Ruhm...", Staatsbibliothek Bamberg 1993 [30]

716 Zeitschrift für Rheumatologie 8 · 2007

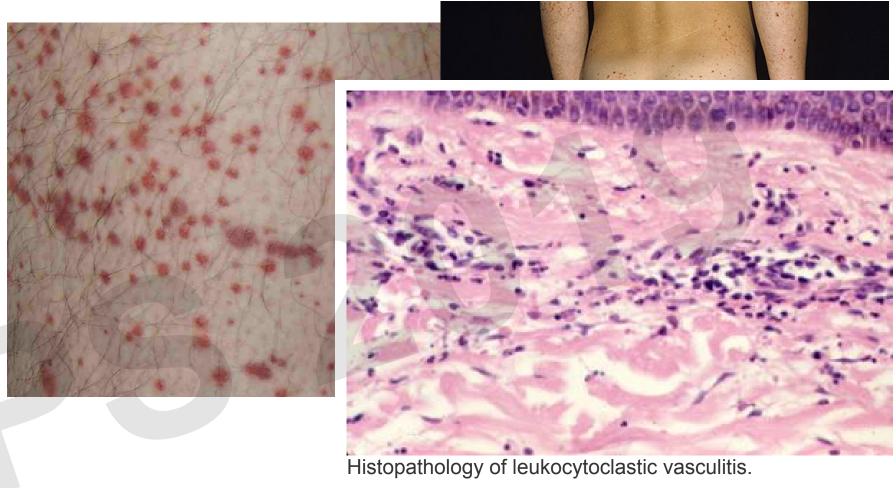
New classification of SHP as IgA vasculitis

Chappel Hill Consensus Conference 2012

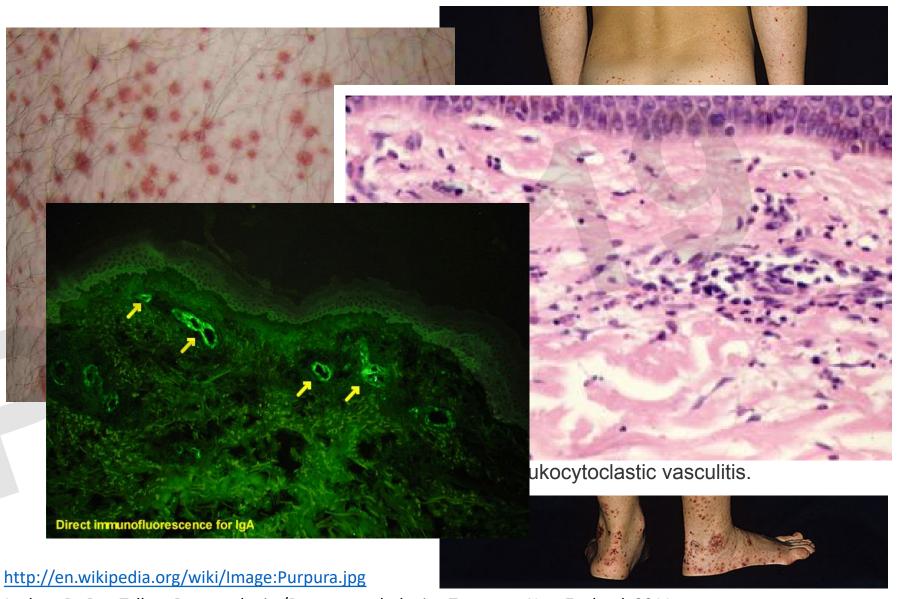
Box 3.9 Classification of Childhood Vasculitisa

Childhood vasculitis can be classified based on the size of the blood vessel affected:

- 1. Large vessel vasculitis (LVV)
 - (a) Takayasu arteritis TAK, (see Sect. 3.6.5.1)
 - (b) Giant cell arteritis (GCA)
- 2. Medium-sized vessel vasculitis
 - (a) Childhood polyarteritis nodosa (cPAN) (see Sect. 3.6.5.2)
 - (b) Kawasaki disease (KD) (see Sect. 3.6.5.3)
- 3. Small vessel vasculitis (SVV)
 - (a) Pauci-immune vasculitis/ANCA-associated vasculitis (AAV) (see Sect. 3.6.3)
 - (i) Microscopic polyangiitis (MPA) (see Sect. 3.6.3.4)
 - (ii) Granulomatosis with polyangiitis (GPA, formerly Wegener's granulomatosis) (see Sect. 3.6.3.5)
 - (iii) Eosinophilic granulomatosis with polyangiitis (EGPA; formerly Churg-Strauss syndrome) (see Sect. 3.6.3.6)
 - (iv) Renal limited vasculitis (pauci-immune necrotizing and crescentic GN (NCGN))
 - (b) Immune complex vasculitis
 - (i) Schönlein–Henoch purpura (SHP)/Schönlein–Henoch nephritis (SHN or IgA vasculitis, IgAV) (see Sect. 3.6.2)
 - (ii) Cryoglobulinemic vasculitis (CV)
 - (iii) Anti-glomerular basement membrane (anti-GBM) disease (see Table 3.12)
- 4. Vasculitis associated with systemic disease
 - (a) Lupus vasculitis (lupus nephritis, LN) (see Sect. 3.6.4)
 - (b) Vasculitis associated with chronic juvenile arthritis, mixed connective tissue disease and overlap syndromes
- 5. Vasculitis associated with probable etiology
 - (a) Vasculitides associated with infections, malignancy, drugs, hypersensitivity


^aBased on the 2012 Chapel Hill Consensus Conference (CHCC 2012)

Bitzan M. "Glomerular Diseases" (chapter 3). In: Manual of Pediatric Nephrology (eds. Phadke K, Goodyer PR, Bitzan M). Springer, Berlin, Heidelberg 2014


http://en.wikipedia.org/wiki/Image:Purpura.jpg

http://en.wikipedia.org/wiki/Image:Purpura.jpg

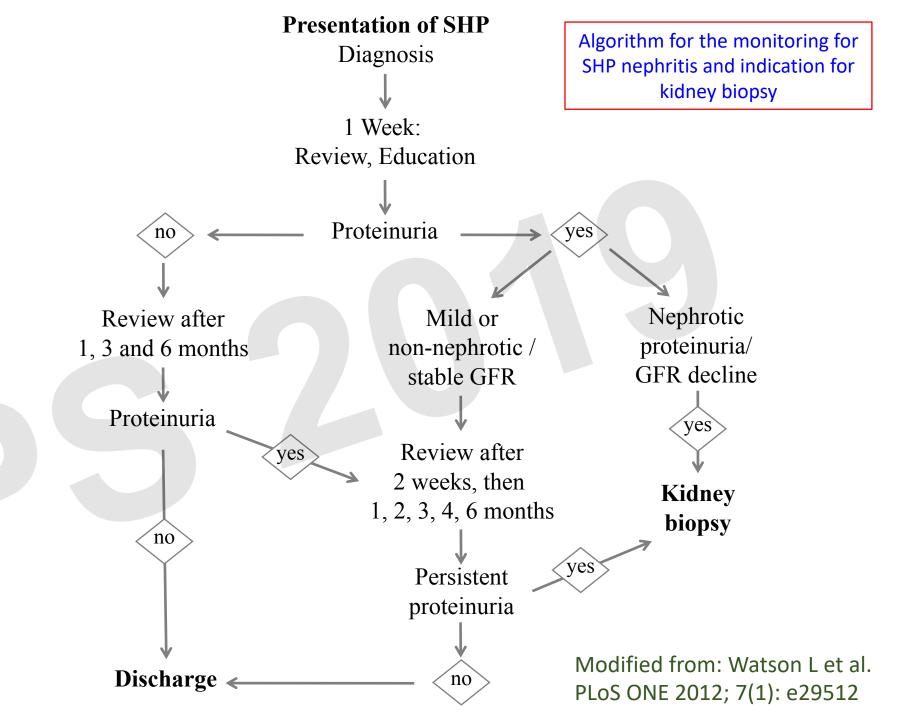
KDIGO Clinical Practice Guideline for Glomerulonephritis

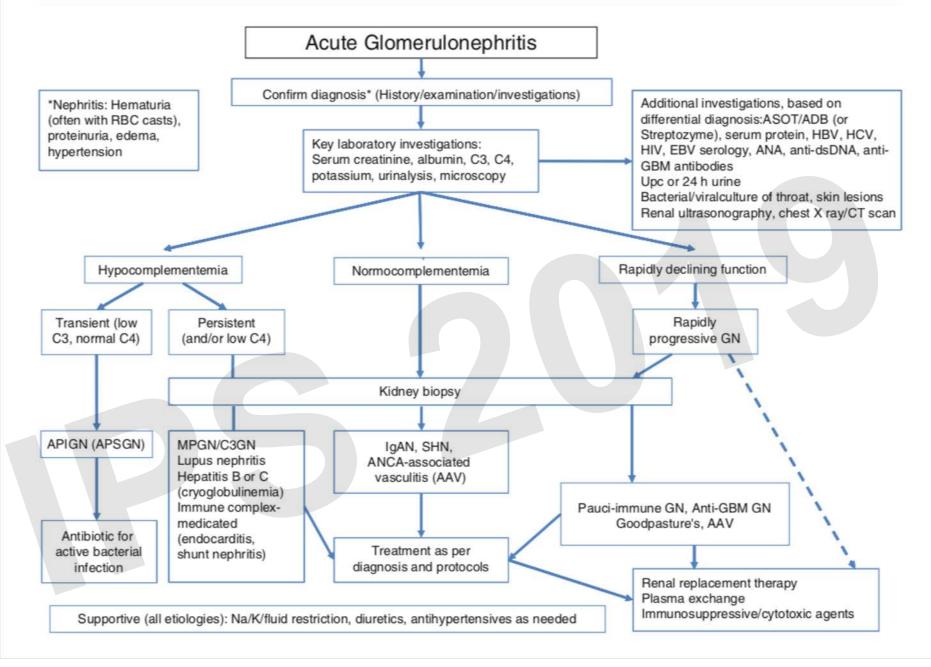
11.1 Treatment of HSP nephritis in children

- 11.1.1: We suggest that children with HSP nephritis and persistent proteinuria 0.5-1 g/d per 1.73 m2, are treated with ACE-C or ARBs. (2D)
- 11.1.2: We suggest that children with persistent proteinuria, >1 g/d per 1.73 m², after a trial of AC E-I or ARBs, and GFR >50 ml/min per 1.73 m², be treated the same as for IgAN with a 6-month course of corticosteroid therapy (see Chapter 10). (2D)

11.2: Treatment of crescentic HSP nephritis in children

11.2.1: We suggest that children with crescentic HSP with nephrotic syndrome and/or deteriorating kidney function are treated the same as for IgA (see Recommendation 10.6.3). (2D)


When to worry and how to treat?


The risk of evolution into CKD for the combination of onset with 1,2

- nephrotic and nephritic syndrome (up to 50%)
- nephrotic syndrome (up to 40 %)
- nephritic syndrome and/or heavy non-nephrotic proteinuria (up to 15%)

¹ Davin & Coppo. *Pitfalls in recommending evidence-based guidelines for a protean disease like Henoch–Schönlein purpura nephritis*. Pediatr Nephrol 2013; 28:1897–1903

² Goldstein AR et al. *Long-term follow-up of childhood Henoch–Schönlein nephritis*. Lancet 1992; 339:280–282

